Agricultural and Life Science Research at Texas A&M

David K. Lunt, Ph.D., MBA

Associate Director

Texas Economy

- 1. Gross State Product = \$1.33 trillion
- 2. If Texas were a country 14th largest in the world (2010 World Bank rankings)
- 3. 8 billion barrels of known petroleum reserves; 1/3 of U.S. total
- 4. Largest producer of wind energy in the U.S.

Agriculture's Economic Impact: >\$100 billion

Texas A&M System

- 1. 11 universities 125,000 students
- 2. 7 state agencies, comprehensive health science center, and law school
- 3. 22 million educational contacts annually through service and outreach
- 4. Physical presence in 250 of 254 counties and programmatic presence in all counties
- 5. \$3.8 billion total operating budget

Texas A&M AgriLife Research

- 1. 13 research centers across the state
- 2. 1,600 full-time employees (606 Ph.D.)
- 3. 1,000 graduate students and other part-time employees
- 4. 582 research projects
- 5. \$200 million in annual expenditures

Precipitation Gradient

Temperature Gradient

Variation in Soil Types

Evolution of Business Model for Public Research

- Business model has radically changed at Land Grant university systems
- 2. One size does not fit all
- 3. Relationships among university systems and companies are evolving, but increasingly customized to meet the needs of each partner in the private sector

Public-Private Partnerships

- 1. Why do university systems seek partnerships in the private sector?
 - a. Bayh-Dole Act of 1980
 - b. Texas State law regarding IP protection and fiduciary responsibility of officers
- 2. Follow the money
 - a. Industry accounts for 72% of R&D spending in the U.S.
 - b. Universities (all sources of funding) 13%
 - c. Public funding for university research has declined 25% per student during the past 20 years

Private Sector Perspective

Why do companies sponsor research or collaborate with public universities?

- a. Flexibility in R&D portfolio
- b. Access to public investment in infrastructure
- c. Outsourcing upstream, "basic" research
- d. Leveraging human capital (facilitate regular interaction with faculty under NDA)
- e. Competitive advantage in recruiting talent

Interaction with the Private Sector

1. Transactional

- Fee for service validation or demonstration
- b. Sponsored research project and publication driven

2. Relationship-Based

- a. Comprehensive combined R&D strategy
- Master research agreement, including IP protection and pathway to commercialization
- c. Taking IP to scale through start-up or joint venture with pre-defined exit strategy

Generating Real Value

Office of Corporate Relations

- a. Established in 2007
- b. Dedicated channel of communication
- c. Collaborative partnerships
- d. Project manager for single POC
- e. Deliverable-driven strategy
- f. \$100M in R&D contracts
- g. 390 invention disclosures
- h. >100 commercial licenses (1/3 exclusive rights)

AgriLife Research is now the #1 Texas A&M System member for disclosures, licenses and royalties

Selected Strategic Partners

Drivers of Global Change

- 1. Food security
- 2. Water
- 3. Distributed energy
- 4. Political risk and public policy

Food Security

- 1. Population growth 7B to 9B in 2050
- Rising disposable income effect: Global demand for meat and poultry up from 172 MMT in 1990 to 279 MMT in 2010 (fish and seafood 97 to 149 MMT): FAO
- 3. Moral and ethical considerations Albert Einstein: "Our technology has exceeded our humanity."
- 4. National and global security Hunger and armed conflict go hand-in-hand.

Water

- 1. Texas Water Resources Institute
- 2. Institute for Renewable Natural Resources
- Salt tolerance, drought tolerance, irrigation efficiency, cropping system modeling, alternative crops (guar, guayule, castor, salicornia, etc.)
- Zero-valent iron system for water treatment at coal-fired power plants, mining, fracking (hydraulic fracturing), and other industrial applications
- 5. Electron beam treatment of municipal waste water
- 6. Fluidized gas bed reactor/water treatment combination

Distributed Energy – Opportunities and Challenges

- Energy Independence and Security Act of 2007 –
 36 billion gallons of biofuel by 2022
- 2. Sustainability of initiative
 - a. Food and feed vs. fuel controversy
 - i. Must use marginal land and/or impaired water
 - b. Economic viability without subsidies
 - Added value co-products
 - ii. Yield and conversion must be improved
 - iii. Logistics of feedstock supply chain

Distributed Energy – Dedicated Energy Crops

1. Energy cane

- a. Extend sugarcane season for Brazilian ethanol refineries
- 2. Wide hybrids sorcane and miscane
 - a. Crop establishment
 - b. Cold and drought tolerance

Distributed Energy – Algae

- 1. Genetically engineer new strains of algae
- 2. Evaluate new reactor designs
- 3. Improve agronomic practices
- 4. Integrate CO₂ from coal fired power plants
- 5. Develop real-time process control systems
- 6. Optimize oil extraction technologies
- 7. Add value to co-products

Demographic Shifts and Political Risk

- Aging population in developed economies
 - Demand shifts in market basket
- Negative population growth in developed economies (45 countries)
 - Technology dilemma: fewer workers but anti-science bias in media, activists, and some consumers
- 3. GM corn and soybeans are industry standard but regulatory cost for new approvals is enormous (citrus greening)
- 4. GM animals may never be accepted by consumers

Battle for the Hearts and Minds of Consumers

- 1. Scientific agriculture is a victim of its own success
 - a. Mass migration to cities
 - Majority of population has no direct tie to the land or food production
- 2. Aristotle's means of persuasion
 - a. Logos appeal to reason
 - b. Pathos appeal to emotion
 - c. Ethos appeal to credibility

Aristotle: 384-322 BC

Upstream R&D on the Horizon

- RNAi for disease resistance
- 2. GM animals for vaccine delivery
- 3. New strategies for bovine genomics
 - a. Metagenomics of the rumen
 - b. Epigenetics copy number variants
- 4. Raman scatter laser technology
 - a. Bioterrorism (anthrax)
 - Real-time detection of aflatoxin and other mycotoxins
 - c. Non-invasive blood tests (insulin, HDL, LDL, etc.)

Greatest Asset: Farmer's Optimism

Sunrise or sunset: An issue of perspective.

